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Direct numerical simulations of three-dimensional homogeneous turbulence under
rapid rigid rotation are conducted for a fixed large Reynolds number and a sequence
of decreasing Rossby numbers to examine the predictions of resonant wave theory.
The theory states that ‘slow modes’ of the velocity, with zero wavenumber parallel to
the rotation axis (kz = 0), will decouple at first order from the remaining ‘fast modes’
and solve an autonomous system of two-dimensional Navier–Stokes equations for the
horizontal velocity components, normal to the rotation axis, and a two-dimensional
passive scalar equation for the vertical velocity component, parallel to the rotation
axis. The Navier–Stokes equation for three-dimensional rotating turbulence is solved
in a 1283 mesh after being diagonalized via ‘helical decomposition’ into normal modes
of the Coriolis term. A force supplies constant energy input at intermediate scales.
To verify the theory, we set up a corresponding simulation for the two-dimensional
Navier–Stokes equation and two-dimensional passive scalar equation to compare
them with the slow-mode dynamics of the three-dimensional rotating turbulence. The
simulation results reveal that there is a clear inverse energy cascade to the large
scales, as predicted by two-dimensional Navier–Stokes equations for resonant interac-
tions of slow modes. As the rotation rate increases, the vertically averaged horizontal
velocity field from three-dimensional Navier–Stokes converges to the velocity field
from two-dimensional Navier–Stokes, as measured by the energy in their difference
field. Likewise, the vertically averaged vertical velocity from three-dimensional
Navier–Stokes converges to a solution of the two-dimensional passive scalar equation.
The slow-mode energy spectrum approaches k

−5/3
h , where kh is the horizontal

wavenumber, and, as in two dimensions, energy flux becomes closer to constant the
greater the rotation rate. Furthermore, the energy flux directly into small wavenumbers
in the kz = 0 plane from non-resonant interactions decreases, while fast-mode energy
concentrates closer to that plane. The simulations are consistent with an increasingly
dominant role of resonant triads for more rapid rotation.
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1. Introduction
Large-scale flows in oceans and the atmosphere are greatly affected by the Earth’s

rotation and are known to be quasi-two-dimensional. Rotation also plays an important
role in many engineering flows, e.g. high-Reynolds-number turbulent flows in turbo-
machinery and rotating channels. When a fluid is under rotation, the Coriolis force
is introduced into the momentum equation and competes with the nonlinear force.
A dimensionless number, the Rossby number Ro, may be defined as the ratio of the
magnitude of the inertial term to the Coriolis force. In a rapidly rotating fluid, a
mathematical limit Ro → 0 is taken of the three-dimensional Navier–Stokes equations.
There is a general expectation that the fluid should become two-dimensional in this
limit. For example, the classic Taylor–Proudman theorem implies that the Coriolis
force will align vortex tubes parallel to the rotation axis in steady-state, rapidly
rotating flows (Greenspan 1968).

To take into account the effect of rapid rotation on dynamical evolution a resonant
wave theory has been applied (Greenspan 1968, 1969; Waleffe 1993). Similar theories
were first developed for gravity waves in geophysical fluid flows (Phillips 1960) and
have since been widely invoked elsewhere. For excellent reviews, see Phillips (1981)
and Craik (1985). According to this approach, the fluid velocity may be regarded
in the limit of small Rossby number as a superposition of inertial waves with a
large characteristic frequency which are modulated on a longer, slow time scale. An
averaged equation is derived from weakly nonlinear theory for the slow-time motion.
This equation explains enhanced energy transfer from small scales to large scales
by the resonant triadic interaction of inertial waves (Greenspan 1968, 1969; Waleffe
1993). Using an ‘instability hypothesis’, Waleffe (1993) argued further that resonant
triadic interactions should drive the flow to become quasi-two-dimensional. More
recently, this type of resonant wave theory has been put on a sounder mathematical
footing. Embid & Majda (1996), Embid & Majda (1998) and Majda & Embid
(1998) have derived similar ‘averaged equations’ in a rigorous asymptotic limit over
a fixed time interval for a general class of geophysical fluids problems with fast wave
dynamics. For the particular case of rotating incompressible fluids, it has been shown
that the averaged equations contain as a subset the two-dimensional Navier–Stokes
equations for the vertically averaged velocity fields (Mahalov & Zhou 1996; Babin,
Mahalov & Nicolaenko 1996).

However, in turbulent flow under rapid rotation not only is the Rossby number Ro
small, but also the Reynolds number Re is large. As a consequence, eddy motions are
excited on a wide range of length scales. At any given wavenumber k there are thus at
least two distinct time scales, the rotation time scale τΩ ∼ 1/(2Ω) and the nonlinear
time scale τnon(k) ∼ (k3E(k))−1/2 (where E(k) is the energy spectrum). The validity of
the wave resonance theories depends upon τΩ being shorter than all other time scales
in the problem. However, for very large Reynolds numbers and for energy spectra
decaying more slowly than k−3, there will be a range of high wavenumbers k where
instead τnon(k) � τΩ. Thus, the resonant wave theory is likely to be valid for turbulent
flows only very non-uniformly in wavenumber, if at all. The existing mathematical
derivations of the theory (Embid & Majda 1996, 1998; Majda & Embid 1998;
Mahalov & Zhou 1996; Babin et al. 1996) are only usefully valid for low Reynolds
numbers. Indeed, error fields for the resonant wave approximation are estimated
in these proofs by ‘Sobolev norms’ that get most of their contribution from high
wavenumbers. The errors are therefore shown, by present theorems, only to have upper
bounds that grow rapidly with the Reynolds number Re. While the error bounds
also decrease with Rossby number Ro, arguments based on comparing time scales,
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like those above, suggest that resonant triads will be selected latest at the highest
wavenumbers. Thus, very low Rossby numbers should be required in the existing
proofs to guarantee that errors in the wave resonance theory are small for fully
developed turbulent flow.

The present evidence from simulations and experiments is also mixed as to the
regime of validity of the theory. Simulations of decaying rotating turbulence by
Bardina, Ferziger & Rogallo (1985) showed a tendency for the length scales along the
axis of rotation to grow as rotation rate increases. Bartello, Métais & Lesieur (1994)
observed two-dimensional vortices emerging from the three-dimensional flow. Hossain
(1994) showed that the turbulent flow reduced to an approximate two-dimensional
state and the energy cascaded to longer length scales in a 323 forced simulation.
These results are roughly in accord with the wave resonance theory. The first
numerical work to study explicitly the relation of flow two-dimensionalization and
resonant triadic interactions was Smith & Waleffe (1999). They observed a strong two-
dimensionalization and a clear inverse energy cascade. However, they suggested that
non-resonant interactions might still play an important role at rotation rates achieved
in their simulations. So far the detailed predictions of two-dimensional turbulence
theory have not been verified numerically in rotating three-dimensional turbulence
and the role of resonant wave interactions has remained unclear for Reynolds number
Re � 1. Thus, it is the purpose of this paper to investigate further the limit of rapidly
rotating three-dimensional turbulence, where resonant interactions should dominate
at leading order and two-dimensional turbulence be achieved.

The remainder of this paper is organized as follows. In § 2, we review the resonant
wave theory of rapidly rotating fluids, including the rigorous mathematical results.
In Appendix A we present, for completeness, a simple proof of Waleffe (1993) that
vertically averaged or two-dimensional fields are not coupled to other modes by
resonant triadic interactions. Particular attention will be paid to a ‘Dynamic Taylor–
Proudman theorem’ that predicts the autonomous time-evolution of these two-
dimensional fields. In Appendix B, we give an elementary derivation of this result
based upon the ‘averaged equation’ of the resonant wave theory. In § 3, we discuss the
numerical schemes and present our simulation results to investigate the mechanism
of two-dimensionalization in rotating turbulence and to study the role of resonant
triads. Finally, our conclusions are presented in § 4.

2. Resonant wave theory
Rapidly rotating fluids are a multi-time scale problem. In a rotating frame of

reference, the Navier–Stokes equation reads (see Greenspan (1968))

∂t u + 2Ω × u = −∇P/ρ + ν∇2u − ω × u. (2.1)

Here, rotation vector Ω = Ω ẑ. u(x) is the velocity field, ω = ∇ × u is the vorticity field,
ρ is the density, ν is the kinematic viscosity and P is the pressure in an inertial frame
modified by a centrifugal term: P =P0 + 1

2
ρ‖Ω × x‖2. If L and U are characteristic

length and velocity scales, then the above equation is non-dimensionalized as

∂t̃ ũ +
2

Ro
ẑ × ũ = −∇̃P̃ +

1

Re
∇̃2ũ − ω̃ × ũ. (2.2)

Here, Rossby number Ro is defined as

Ro =
U

ΩL
, (2.3)
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and Reynolds number Re as

Re =
UL

ν
. (2.4)

For simplicity, we omit the symbol tilde from now on.
Naive perturbation theory or ‘rapid-distortion theory’ retains only the leading-order,

fast linear dynamics in the limit Ro → 0:

∂t u +
2

Ro
ẑ × u = 0. (2.5)

The solution of this equation is given by a superposition of helical waves:

u(x, t) =
∑

k

∑
s=±

as(k, t)hs(k)eik·x (2.6)

where h±(k) are the helical modes, defined as orthogonal eigenmodes of the curl
operator, satisfying ik × hs = s|k|hs with s = ±1 (Greenspan 1968; Waleffe 1992).
The wave amplitudes exhibit fast harmonic oscillations as(k, t) =Ask

exp(iωsk
t/Ro)

of frequency ωsk
= 2s( ẑ · k)/k =2skz/k = 2s cos θk , with θk the angle between Ω

and wavenumber vector k. (As a convenient shorthand, we abbreviate the pair (k, s)
as sk .)

However, this naive perturbation theory is only asymptotically valid for very short
times t = O(Ro) as Ro → 0, because it misses a slow, secular evolution of the wave
amplitudes. That is, the solution of (2.2) evolves in fact on two distinct time scales, the
slow time t and the fast time scale τ = t/Ro of the inertial waves. To leading order, this
solution still takes the form of (2.6) but the wave amplitude satisfies a multiple-scale
Ansatz ask

(t, τ ) = Ask
(t)exp(iωsk

τ ), consisting of inertial waves with rapid oscillations
on the fast time scale and amplitude Ask

(t) depending on the slow time t . This secular
time-dependence can be obtained by substituting the helical mode expansion (2.6)
into (2.2). On this basis, the Coriolis term is diagonalized and (2.2) takes the form(

∂t − i
1

Ro
ωsk

+
1

Re
k2

)
ask

=
1

2

∑
k+ p+q=0

∑
sp,sq

C
sk,sp,sq

k pq a∗
sp
a∗

sq
. (2.7)

A standard multiple-scale asymptotic expansion is then made with ∂t → ∂t + (1/Ro)∂τ .

The slow time-dependence of the amplitudes Ask
(t) is determined to eliminate secular

terms growing like τ , yielding the ‘averaged equation’:

(
∂t +

1

Re
k2

)
Ask

=
1

2

ωsp +ωsq +ωsk
=0∑

k+ p+q=0

∑
sp,sq

C
sk,sp,sq

k pq A∗
sp
A∗

sq
, (2.8)

valid for a slow time t = O(1). Only ‘resonant triads’ satisfying

ωsp
+ ωsq

+ ωsk
= 0 (2.9)

still remain in this equation. See Greenspan (1968); Waleffe (1993) for more details.
Even higher-order asymptotic theories can be constructed, which have better accuracy
for slow times t =O(1) or which are asymptotically valid for even longer time intervals
t = O(1/Ro). For example, see Newell (1969). Such theories take into account near-
resonances, in which the condition in (2.9) is not satisfied exactly but only to order
O(Ro), and higher-order resonances, such as resonant quartets in which four fre-
quencies sum to zero. Such ‘non-resonant effects’ (by which we mean any interactions
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other than from resonant triads) will be especially important at moderate Rossby
numbers.

In the resonant wave theory there is a natural division of modes into two classes.
The zero frequency modes or so-called slow modes, with ωsk

= 0, have kz = 0 and thus
coincide with two-dimensional modes having no variation along the rotation axis.
The slow modes can also be obtained by vertically averaging the three-dimensional
velocities

u3D(x, y) =
1

H

∫ H

0

u(x, y, z) dz,

with H the vertical height of the domain. The remaining modes with kz 	= 0 are
fully three-dimensional modes and, since they have non-zero frequency, are called fast
modes. There are therefore three classes of resonant triads: ‘fast-slow-fast’ and ‘slow-
slow-slow’ and ‘fast-fast-fast’. We follow the convention that the first wavenumber
in the triad is the one appearing on the left-hand side of equation (2.8), and is thus
the mode which undergoes evolution due to interaction of the other two modes.
For example, a ‘fast-slow-fast’ triad gives a contribution to the evolution of a fast
mode due to the interaction of another fast mode and a slow mode. In such a
resonant triad, the slow mode acts simply as a catalyst for energy exchange between
the two fast modes and its own energy is unchanged (Greenspan 1969; Waleffe
1993). Formally speaking, there are resonant ‘slow-fast-fast’ triads, but they have
zero coupling coefficient. Waleffe (1993) has shown this to hold for rapidly rotating
three-dimensional flow as a consequence of the joint conservation of energy and
helicity and, for the convenience of the reader, we reproduce his simple argument in
Appendix A. This result is known to hold more generally in the theory of resonant
fluid interactions, not only for simple rotation but also for β-plane flows (Longuet-
Higgins & Gill 1967), stratified flows (Phillips 1968; LeLong & Riley 1991), rotating
stratified flows (Bartello 1995), and rotating shallow-water flows (Warn 1986).

An important consequence is that the slow two-dimensional modes in the limit
of rapid rotation evolve under their own autonomous dynamics. This consists of
all the ‘slow-slow-slow’ triadic interactions, each of which is resonant. The averaged
equation for the autonomous two-dimensional modes splits into two parts, as shown
by Embid & Majda (1996) and Babin et al. (1996). As Ro → 0, the vertically averaged
horizontal velocity u3D

H = (u3D, v3D) satisfies the two-dimensional Navier–Stokes (2D-
NS) equation:

∂t u3D
H +

(
u3D

H · ∇
)
u3D

H = −∇PH/ρ + ν∇2u3D
H , (2.10)

while the vertically averaged vertical velocity w3D satisfies the two-dimensional passive
scalar equation:

∂tw
3D +

(
u3D

H · ∇
)
w3D = ν∇2w3D. (2.11)

We give an elementary derivation of these results in Appendix B, assuming the vali-
dity of the averaged equation (2.8). Notice that it is not implied by this result that
a flow under rapid rotation will become two-dimensional, but it does mean that the
dynamics will contain an independent two-dimensional subdynamics, to leading order.
In this respect, the result resembles the classic Taylor–Proudman theorem for steady
flows (Greenspan 1968), so that it can be termed the ‘Dynamic Taylor–Proudman
Theorem.’ Precisely, the statement is that the ‘slow-slow-slow’ triadic interactions
yield the 2D-3C Navier–Stokes equations. 2D-3C means two variables (x,y) but three
components (u3D, v3D, w3D).
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The averaged equation (2.8) for the evolution of fully three-dimensional (fast)
modes contains interactions of both the ‘fast-slow-fast’ and ‘fast-fast-fast’ types.
While these cannot transfer energy directly to slow two-dimensional modes, Waleffe
(1993) has argued that ‘fast-fast-fast’ resonances do play an important role in flow
two-dimensionalization. As a consequence of an ‘instability hypothesis’, he has shown
that energy in the fast three-dimensional modes is transferred by this set of resonances
preferentially to slower modes, with smaller (but not zero) vertical wavenumber kz. On
the other hand, the catalytic ‘fast-slow-fast’ triads can transfer energy only between
fast modes with the same wavevector magnitude k and the same value of cos θ

(Waleffe 1993). Hence, they can play no direct role in transferring energy between
scales or in two-dimensionalization of the flow. Their plausible effect is simply to
isotropize the fast mode energy distribution in the horizontal-wavenumber plane.

The multiple-scale Ansatz and the averaged equation (2.8) have been rigorously
proved by Embid & Majda (1996) and Majda & Embid (1998) for a general fluid
dynamical equation with fast wave dynamics, which includes rapidly rotating fluids
as a special case. The precise statement of their result is that there exists some finite
time T > 0 and an exponent p > 1 + d/2 (with d space dimensions) such that, for all
0 < t < T, ∑

k,sk

k2p
∣∣aRo

sk
(t) − Ask

(t) exp(iωsk
t/Ro)

∣∣2 = o(1) (2.12)

as Ro → 0, where aRo
sk

(t) is the solution of the full equation (2.7) for given Rossby
number Ro, and Ask

(t) is the solution of the averaged equation (2.8). Thus the error
in the multiple-scale approximation goes to zero in the Sobolev-norm sense of (2.12)
as Ro → 0. This result can be stated in another way, in terms of the error field

δRo(x, t) ≡ uRo(x, t) − U(x; t, t/Ro), (2.13)

where uRo(x, t) is the solution of the rotating Navier–Stokes equation (2.2) and
U(x; t, τ ) is the multiple-scale Ansatz written in physical space. Define ERo

δ (k, t) as the
wavenumber spectrum of the field δRo(x, t), or the error energy spectrum (Kraichnan
1970; Leith & Kraichnan 1972). Then (2.12) is equivalent to the statement that, as
Ro → 0, ∫ ∞

0

dk k2pERo
δ (k, t) = o(1), (2.14)

for all 0 < t <T and some p > 1 + d/2. Thus, the theorem guarantees that some
moment of the error spectrum goes to zero, at least over a finite time interval, as
Ro → 0.

The multiple-scale argument applies to any rotating three-dimensional flow, whether
laminar or turbulent. However, the error bounds in (2.12) and (2.14) assume that, for
d =3, energy spectra decay faster than k−6 at high wavenumbers k, much steeper
than turbulent spectra in the inertial range. Of course, when the Reynolds number
Re is large but finite, then the spectra will eventually decay exponentially at large
enough k, in the far dissipation range. However, because of the long inertial range, the
Sobolev norms in (2.12) and (2.14) will become strongly Reynolds-number dependent,
expected to grow as some power (Re)ξp . Thus, the norms will not be small at high
Reynolds number, except when the Rossby number is extremely low. Indeed, note
that the spectral moments in (2.14) will get most of their contribution from near the
Kolmogorov dissipation wavenumber kd in a turbulent flow. That is the last wave-
number range where resonant triads will be selected as Ro → 0, because the eddy turn-
over time τnon(kd) in the dissipation range is the shortest in the entire flow. Therefore,
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Experiment/numerical simulations Rossby number Forcing scale

Traugott (1958) (decay) Roω = 1.65 none
Wigeland & Nagib (1978) (decay) Roω = 0.4 ∼ 16 none
Bardina et al. (1985) (decay) Roω = 0.3 ∼ 6.3 none
Jacquin et al. (1990) (decay) RoL = 0.2 ∼ 12 none
Bartello et al. (1994) (decay) Roω = 0.01 ∼ 100 none
Hossain (1994) (forced) RoL = 0.1 11 � k2

f � 13

Yeung & Zhou (1998) (forced) RoL = 0.00064 ∼ 0.0195 kf � 2
Smith & Waleffe (1999) (forced) RoL = 0.17, 0.35 kf = 24
Our 1283 DNS (2003) (forced) RoL = 0.0021 ∼ 0.066 22 � kf � 24

Table 1. Different Rossby numbers from experimental and numerical studies.

the present theorems effectively say nothing about the validity of the resonant wave
theory at high Re, for realistic values of the Rossby number. Since previous numerical
simulations of rotating turbulence by Bardina et al. (1985), Bartello (1994), Mansour,
Cambon & Speziale (1992), Hossain (1994), and Smith & Waleffe (1999) have also not
verified the predictions of (2.8), its regime of validity for turbulent flow has remained
unclear.

3. Numerical simulations and analysis
To address this issue, we have simulated the rotating Navier–Stokes equation (2.2)

in a 1283 periodic box with a forcing

fi(k, t) = εk,i/ûi(k, t)∗. (3.1)

Here, ûi(k, t)∗ is the conjugate of Fourier component ûi(k, t). This force is specially
chosen so that the energy input rates εk,i are all fixed (Siggia & Kerr 1978), and we
choose the latter to be constant in a narrow band 22 < kf < 24 and zero elsewhere.
Thus, the total input power ε =

∑
k,i εk,i is constant, as are the separate energy inputs

into slow modes and fast modes. This forcing guarantees also that the energy input
is the same for all rotation rates. The normal viscosity term ν∇2u is replaced by
a hyperviscosity term (−1)q+1νq(∇)2qu with q = 8, to extend the inertial range. The
Coriolis force and viscosity term are integrated exactly using a slaved, second-order
Adams–Bashforth scheme. At each time step, the velocity in Fourier space û(k, t) is
decomposed into the two helical modes and these two modes are evolved according
to (2.7). The nonlinear term is calculated using the usual pseudospectral method and
then projected onto the two helical modes (Smith & Waleffe 1999). The equation may
be non-dimensionalized using the length scale Lf = 1/kf and velocity Uf =(ε/kf )1/3

from the forcing parameters. In that case, the dimensionless groups that appear
are the forcing Rossby number (or macro-Rossby number) RoL =(εk2

f )1/3/Ω and a

hyperviscous Reynolds number Re(q) = ε1/3/(νqk
2(q−1/3)
f ). In our simulations Re(q) was

held fixed at 3260, while RoL was varied from 0.066 to 0.0021. Rossby numbers from
the various experimental and numerical studies are collected in table 1. In the table
micro-Rossby number Roω = ω′/(2Ω) and ω′ is r.m.s. vorticity.

Among the direct numerical simulations of forced rotating turbulence, Yeung &
Zhou (1998) were interested in the dynamics in the range k > kf , whereas we and
others (Smith & Waleffe 1999; Hossain 1994) focus on the dynamics in the inverse
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Type of triad Resonant/Non-resonant Characteristics as Ro → 0

slow-slow-slow R 2D+3C
slow-fast-fast N vanishing
fast-slow-fast R + N catalytic
fast-fast-fast R + N quasi-2D

Table 2. Triadic interactions in three-dimensional rotating turbulence.

energy cascade range k < kf . We consider a transient flow state, in which rotation
is begun after a statistically steady state is reached without rotation. The results
shown below, if without specification, were obtained after taking an ensemble average
over eight realizations started from distinct initial conditions. This simulation is
patterned after a 1282 simulation of two-dimensional N-S by Smith & Yakhot (1993).
They found that an inertial-range energy spectrum k−5/3 is established by the two-
dimensional inverse cascade process and energy flux in the inverse cascade range is a
negative constant, at least before energy begins to accumulate at the largest scales. To
compare the results of our three-dimensional rotating simulation with its hypothetical
limit, described by the 2D-NS and passive scalar equations, we carry out simultaneous
calculations with (2.10) and (2.11) in which the initial conditions are the vertically
averaged initial conditions of the rotating flow and the force is the vertically averaged
three-dimensional force. In such a setup the simulation time is also the slow time
t, in the notation of § 2. With these simulations we systematically check the main
predictions of the averaged equation (2.8) for the resonant interactions.

As Rossby number asymptotically approaches zero, the resonant triadic interactions
represented in the ‘averaged equation’ should become more and more dominant over
the non-resonant ones. In table 2, all resonant and non-resonant triadic interactions
and their characteristics in the rapid-rotation limit are listed. In this section, we
examine carefully the validity of the resonant wave theory as we decrease the Rossby
number. To be more specific, slow-slow-slow triadic interactions, slow-fast-fast triadic
interactions and fast-fast-fast triadic interactions are studied, respectively.

3.1. Energy spectra and transfer

In figure 1 are plotted three-dimensional energy spectra for different Rossby numbers
and also for the parallel two-dimensional run. In the plot, kh = (k2

x + k2
y)

1/2 is horizontal
wavenumber magnitude. When rotation is ‘turned on’, energy is transferred to the
large scales as shown in figures 1(a) and 1(c), consistent with the previous observations
(Hossain 1994; Smith & Waleffe 1999). Notice that large-scale energy grows faster
at Ro =0.066 than at Ro = 0.0021, when the energy input is the same. For Rossby
number Ro =0.17, Smith & Waleffe (1999) observed a rapid energy transfer to low
wavenumbers similar to ours at Ro = 0.066, which they interpreted as due to fast,
non-resonant interactions of inertial waves. For both of our Rossby numbers, the flow
tends to two-dimensionalize. In particular, figures 1(b) and (d) show that slow-mode
energy E(kh, kz =0), energy from vertically averaged horizontal velocity Euv(kh, kz = 0)
and total energy E(k) all collapse together at large scales. This does not mean, however,
that the fluid dynamics is that of 2D-NS. At Ro = 0.066, these three spectra are still
far from the spectrum E2D(kh) of the 2D-NS solution. It is only at our smallest
Rossby number Ro = 0.0021 that the spectra of kz =0 modes begin to approach
the two-dimensional-spectrum E2D(kh) suggesting that the resonant wave theory is
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Figure 1. (a), (c) The time evolution of the energy spectrum for (a) Ro= 0.066 and (c) Ro=
0.0021 at t = 0, t = 172τ0, t = 344τ0, t = 430τ0 and t = 600τ0 (moving upward). Note that E(k, t0)
is the initial energy spectrum and τ0 is the initial large-eddy turnover time. (b), (d) Three types
of spectra from one realization at time t =600τ0 for (b) Ro=0.066 and (d) for Ro = 0.0021.

becoming more valid. Even at Ro = 0.0021 the spectrum Euv(kh, kz = 0) plotted in
figure 1(d) for time t = 600τ0 is nearly three times as large as E2D(kh), due largely to
a smaller energy input from the force into the two-dimensional flow.

To investigate how energy is transferred to the large scales, we calculate the energy
transfer functions

T (kh, kz) =
∑

S(kh),I (kz)

Re[û∗ · û × ω̂],

where S(kh) denotes a circular shell of horizontal wavenumbers with central radius
kh and I (kz) is an interval of vertical wavenumbers with midpoint kz. These energy
transfer functions are plotted for two rotation rates in figures 2 and 3, normalized by
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Figure 2. Normalized energy transfer functions T (kh, kz)/|T |max at different times for Ro=
0.066. The red colour indicates large positive transfer and the blue colour indicates large
negative transfer. τ0 is the initial large-eddy turnover time.

their largest absolute values. Initially, before rotation is added, most of the energy
transfer activity happens in the vicinity of the forcing scale kf , where T (kh, kz) is
negative (see figure 2a). The positive transfer at somewhat higher k represents a
forward cascade of energy. When the system rotates slowly, at the largest simulated
Rossby number Ro = 0.066, energy is quickly carried away from the forcing scales
to the kz = 0 plane, presumably by a combination of resonant and near-resonant
interactions. This energy is then transferred further towards smaller kh in the kz = 0
plane (see figure 2), by essentially a two-dimensional inverse cascade. There is a
general tendency, at all Rossby numbers, for the largest transfers at later times to
be into the slow modes at kz = 0. When the system rotates thirty times faster, at
Ro = 0.0021 (see figure 3), the initial transfer is predominately from forward energy
cascade. However, by t = 450τ0, most of the energy transfer is again concentrated near
the kz = 0 plane. If non-resonant interactions are largely suppressed at this Rossby
number, then this transfer must arise from ‘fast-fast-fast’ resonances, as argued by
Waleffe (1993). Even at this latest time hardly any transfer has developed in the kz = 0
plane to smaller kh, showing the two-dimensional inverse cascade is just incipient at
this Rossby number.
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Figure 3. Normalized energy transfer functions T (kh, kz)/|T |max at different times for
Ro= 0.0021.

3.2. Dynamics of the slow modes

The resonant wave theory predicts not just that two-dimensionalization will occur,
but also that the slow two-dimensional modes will satisfy 2D-3C dynamics, and, in
particular, should exhibit the phenomenology of the two-dimensional inverse cascade.
To test this, we study the spectral transfer at various Rossby numbers. Energy is
conserved for triads with all slow modes (since it is conserved in detail for all triads).
Thus, we can define the energy flux∏

sss

(kh) =

∫ ∞

kh

Tsss(k
′
h) dk′

h

in horizontal wavenumber kh, where the energy transfer function

Tsss(kh) =
∑
S(kh)

Re[û∗
s · ûs × ω̂s]

only accounts for the contribution from slow modes. Note that the fields ûs(k), ω̂s(k)
have been projected onto the subspace of slow modes, that is, they are set equal to û(k),
ω̂(k), respectively, on the kz =0 plane and zero elsewhere.† In figure 4 are plotted

† Equivalently, ûs(k), ω̂s(k) are just the three-dimensional Fourier transforms of the vertically
averaged fields u3D(x, y), ω3D(x, y).
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Figure 4. Normalized energy fluxes from slow-slow-slow interactions for (a) Ro= 0.066;
(b) Ro= 0.0021; (c) normalized energy flux from two-dimensional Navier–Stokes at different
times. Here, εs is slow-mode energy input for 3D-NS with rotation and ε2D(t) is energy input
for 2D-NS; τ0 is the initial large-eddy turnover time. εs is the same for every rotation rate in
our study.

energy fluxes Πsss(kh) for different Rossby numbers together with the energy flux
Π2D(kh) from the corresponding two-dimensional simulation. At the larger Rossby
number Ro = 0.066, energy fluxes not only fluctuate over time but also are much
bigger than those at smaller Rossby numbers. At Ro = 0.0021, energy fluxes are
negative at large scales showing a complete inverse energy cascade range. Moreover,
around time t =400τ0 the fluxes begin to develop a spectral range with constant value,
as expected in two-dimensional turbulence, and in fact agree closely with those from
2D-NS (figure 4c). A consistent picture is obtained by fitting power laws to the energy
spectra, at different rotation rates. figure 5(a) shows that slow-mode energy spectra
E(kh, kz =0) are closer to k−3 than k−5/3 at Ro = 0.066, in agreement with the findings
of Smith & Waleffe (1999) at comparable Rossby numbers. However, at Ro =0.0021
the spectrum scales as k−5/3 (figure 5b) similar to that of the corresponding 2D-NS
simulation in figure 5(c) and as expected for a transient two-dimensional inverse
cascade with this forcing (Smith & Yakhot 1993).

In figure 6 we present at various Rossby numbers the time evolution of the energy
spectrum Ew(kh, kz = 0) of the vertically averaged vertical velocity w3D, compared with
the time evolution of the spectrum Eθ (kh) of a passive scalar in the two-dimensional
parallel simulation. Figure 6(a) shows that at the highest simulated Rossby number
Ro = 0.066 there is a tendency for an inverse cascade of w3D towards the large
scales. This is opposite to what happens for a passive scalar in a two-dimensional
inverse energy cascade range, which is well known to experience a direct cascade
to high wavenumber: see Celani et al. (2000) and our figure 6(c). However, as Ro
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decreases, the energy spectra of w3D become closer to those of the two-dimensional
passive scalar, especially at the lowest simulated Rossby number Ro =0.0021
(see figure 6b). Thus, w3D tends also to transfer downscale as the rotation rate
increases.

The difference between the three-dimensional slow-mode dynamics and 2D-NS at
finite Rossby numbers is also reflected in their different flow structures. In figures 7–9
are plotted the iso-surfaces of the vertically averaged vertical vorticity ω3D

z from the
three-dimensional flow and those of the two-dimensional vorticity ω2D . Here, the
averaged vertical vorticity is

ω3D
z =

1

H

∫ H

0

ωz(x, y, z) dz.

In figure 7 the formation of large vortices is seen at the higher Rossby number
Ro = 0.066. Both cyclonic and anticyclonic vortices are present in the flow, which is
different from the observations from Smith & Waleffe (1999).† Over the same time
period, large vortices are not visible in the two-dimensional turbulent flow, which
seems still in its infancy (see figure 9). However, at a much smaller Rossby number
Ro = 0.0021, the flow structures at early times in three-dimensional bear a strong
resemblance to those seen in two-dimensional (see figures 8 and figure 9, panels (a)
and (b)). At later times the vortices in the smallest Rossby number three-dimensional
flow are noticeably stronger than those in two-dimensional (figures 8 and 9, panels (c)
and (d)).

The Dynamic Taylor–Proudman Theorem predicts that the three-dimensional slow
modes will obey the 2D-3C Navier–Stokes equations, asymptotically for low Rossby
numbers. As we discussed in the previous section (cf. (2.12), (2.14)), Embid & Majda
(1996) and Majda & Embid (1998) measured the size of the deviations from this
prediction by Sobolev norms of the error field with large p, which do not yield useful
estimates for high-Reynolds-number flow. Therefore, we shall consider here instead
p = 0, or the error energy itself, as in Kraichnan (1970) and Leith & Kraichnan (1972).
It is useful to divide this error energy into separate contributions from horizontal and
vertical velocity components. Precisely, we define

Eδ,H (t) =
1

2

∫
d2x

∣∣u3D
H − u2D

∣∣2, Eδ,V (t) =
1

2

∫
d2x |w3D − θ2D|2. (3.2)

As before, u3D
H =(u3D, v3D) and w3D are the vertically averaged horizontal and vertical

velocities, respectively. For comparison, u2D = (u2D, v2D) is the solution of the 2D-NS
equation (2.10) and θ2D is the solution of the two-dimensional passive scalar equation
(2.11). In figures 10(a) and 10(b) are shown the error energies in (3.2), normalized by
the energies EH (t, Ro), EV (t, Ro) of the corresponding three-dimensional vertically
averaged fields, as functions of time at different Rossby numbers. Both plots show
that the normalized error energy, at least over a finite interval of time, decreases as

† In their simulations, only cyclonic vortices were observed at larger Rossby numbers, as also
in many geophysical flows. The only significant difference of our DNS from theirs at these Rossby
numbers is the forcing, which was random (Gaussian, white-noise in time) in their case and
deterministic (equation (3.1)) in ours. It is therefore tempting to suggest that our phase-coherent
force acted to preserve the symmetry in the sign of vorticity of our initial conditions.
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(a) t = 25τ0 (b) t = 150τ0

(c) t = 250τ0 (d) t = 500τ0

Figure 7. Time histories of the vertically averaged vertical vorticity ω3D
z iso-surfaces from

three-dimensional rotating turbulence at Ro= 0.066. The red colour is for large positive
vorticity and the blue is for large negative vorticity.

(a) t = 25τ0 (b) t = 150τ0

(c) t = 250τ0 (d) t = 500τ0

Figure 8. Time histories of the vertically averaged vertical vorticity ω3D
z iso-surfaces from

three-dimensional rotating turbulence at Ro= 0.0021.

Rossby number is lowered. For any finite value of Ro, the vertically averaged
three-dimensional solutions and the two-dimensional solutions begin to diverge
as time t increases because of their chaotic dynamics and become uncorrelated, leading
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(a) t = 25τ0 (b) t = 150τ0

(c) t = 250τ0 (d) t = 500τ0

Figure 9. Time histories of the ω2D
z vorticity iso-surfaces from 2D-NS.

to saturation of the normalized error energy at sufficiently long times.† Although pre-
sently available theorems do not rigorously imply the behaviour observed in figure 10
for the p = 0 norms, nevertheless these results are quite in line with expectations
from the formal multi-time-scale analysis (Greenspan 1968; Waleffe 1993). For a
range of slow time t the difference between the evolution of the vertically averaged
fields under the full 3D-NS equation and under the averaged equation vanishes as
the Rossby number tends to zero. At larger values of the slow time t the error
arising from the averaged equation grows, implying non-resonant effects in the full
three-dimensional solution. This is consistent with some recent closure theories,
Cambon, Rubinstein & Godefred (2004), which predict coupling of slow and fast
modes to higher-order accuracy or at longer times.

An important quantity to determine is the maximal length T∗ of the slow-time
interval over which the resonant wave theory becomes valid as Ro → 0 . The rigorous
theorems guarantee that a finite time T > 0 exists so that Sobolev norms of the
error (with p > 1 + d/2) converge to zero for all slow times t ∈ [0, T ]. However, the
asymptotic analysis does not determine the largest possible time T∗ for which this
is true. In order to estimate this, we have defined T (Ro) for each Rossby number
Ro as the time t for which the normalized error energy plotted in figure 10(a) first
reaches the value 0.5. Beyond this time, non-resonant effects can certainly no longer
be neglected. T (Ro) is plotted as a function of Ro in figure 11. For a wide range of
Rossby numbers above 0.00825, the graph can be fitted by a power law Ro−1/2 with
a small error bar (only 2%). The reason for such a power law to exist in this range
is not clear. Interestingly, there appears to exist a transition when Rossby number
is below 0.00825 and the slope of the graph decreases, perhaps even saturating to a

† Note that the saturation level is higher for the lower Rossby numbers, reversing the trend at
early times. This seems to be due simply to our normalization of the error by the total energy and
the fact that less energy has accumulated at a fixed time for lower Rossby numbers.
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Figure 10. Normalized error energy for (a) u3D
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Figure 11. Time T (Ro) vs. Rossby number Ro. There exists a power-law scaling Ro−0.5 in
the range Ro> 0.00825, but the graph appears possibly to platueau below Ro=0.00825.

constant. If true, this implies that the resonant wave theory can be valid, even for
arbitrarily small Ro, only in a finite time interval of length < T∗ = limRo→0 T (Ro).

3.3. Fast-mode interactions

Our previous findings are consistent with the expected segregation of the autonomous
two-dimensional slow modes from the three-dimensional fast modes to leading order
at low Rossby numbers. All ‘slow-fast-fast’ triads transferring energy from a slow
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mode by interactions with two fast modes are non-resonant and it is another main
prediction of the resonant wave theory that such transfer should disappear as Ro → 0.

To test this, we calculate an energy flux into low-wavenumber slow modes from slow-
fast-fast triadic interactions. Precisely, we define∏

sff

(kh) = −
∫ kh

0

Tsff (k′, kz = 0) dk′

where Tsff (kh, kz = 0) = T (kh, kz = 0) − Tsss(kh) is the energy transfer function from fast
modes into slow modes at horizontal wavenumber kh. Figure 12(a–c) shows that en-
ergy flux into slow modes at small kh decreases as Ro decreases. In another words, less
and less fast-mode energy is transferred into the large scales in the two-dimensional
plane as Ro → 0. At larger Rossby numbers, more energy is drained from fast modes
directly into the large-scale slow modes by such non-resonant transfer, causing the
flow to become two-dimensional more quickly than at smaller Rossby numbers. Smith
& Waleffe (1999) suggested that this non-resonant mechanism was responsible for the
rapid two-dimensionalization in their simulation at larger Rossby numbers.†

† Although we agree with their conclusion, we do not find the argument they offered very
convincing. In their simulation, the forcing was white-noise in time with a wavenumber spectrum

F (k) = εkexp(−0.5(k − kf )2/σ 2)/
√

2πσ 2, non-zero in a spherical shell with mean radius kf and width
σ. They attributed the strong two-dimensionalization they observed to non-resonant interactions,
because of what they claimed was purely three-dimensional forcing. However, their forcing input
energy not only into the fully three-dimensional modes but also into two-dimensional modes in the
circular band where the spherical shell intersects the kz = 0 plane. This energy will inverse cascade
to large scales by ‘slow-slow-slow’ resonant interactions.
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Figure 13. Normalized fast-mode energy distributions Ef (cosθ, t)/(εf τ0) for (a) Ro= 0.066;
(b) Ro=0.00825; (c) Ro= 0.0021 at different times.

A final prediction of the resonant wave theory is that, as Ro → 0, fast-mode energy
will tend to be transferred toward smaller values of cos θ by ‘fast-fast-fast’ resonant
interactions. Waleffe (1993) has demonstrated this tendency using the resonance
condition (2.9) and a plausible ‘instability hypothesis’, which asserts that energy will
tend to be transferred out from the unstable leg of a wavevector triad. Mansour et al.
(1992) and Cambon & Jacquin (1989) have observed that energy was transferred
towards small cos θ . However, neither distinguished fast modes from slow modes.
Thus, the effects they saw may also be due to non-resonant transfer from fast modes
directly into slow modes. In order to investigate the ‘fast-fast-fast’ interactions, we
calculate the energy distribution Ef (cos θ, t) only from fast modes. (We recall that
the catalytic ‘fast-slow-fast’ interactions can only transfer energy between fast modes
with the same value of cos θ and thus cannot contribute to the dynamics of this
quantity.) Figure 13(a) shows that Ef (cos θ, t) flattens monotonically with time at the
largest Rossby number Ro = 0.066, implying that fast modes behave largely three-
dimensionally. At the middle Rossby number Ro =0.00825 (figure 13b), Ef (cos θ, t)
peaks at smaller cos θ at earlier times and then flattens everywhere at later times.
However, at the smallest Rossby number Ro = 0.0021, fast-mode energy monotonically
builds up at small cos θ (figure 13c). Assuming that resonant interactions dominate
at that Rossby number, this observation supports the conclusions of Waleffe (1993)
based on the ‘instability hypothesis’.

4. Conclusions
To summarize briefly our results, this is the first numerical simulation of forced

homogeneous rotating turbulence to explore quantitatively the long-time effects of
resonant interactions on the two-dimensionalization as Ro → 0. We have accomplished
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this by a systematic study of the fluid velocity field decomposed into ‘slow’ (two-
dimensional) modes and ‘fast’ modes. We demonstrate an inverse cascade regime for
the slow modes with the characteristics of two-dimensional turbulence, namely, a
k

−5/3
h spectral range where energy flux is negative and constant for the slow-mode

dynamics (figures 4 and 5). This is consistent with the predictions of 2D-3C equations,
corresponding to resonant interactions. Three additional findings verify the increasing
importance of resonant interactions to two-dimensionalization at small Ro. First,
vertically averaged three-dimensional velocities (u3D, v3D, w3D) and the solutions of
2D-3C equations converge as Ro → 0, in the sense that the energy in their difference
fields vanishes (figure 10). Second, non-resonant energy flux into small kh in the
kz = 0 plane from slow-fast-fast triads decreases as Ro decreases (figure 12). Finally,
fast-mode energy is transferred toward the kz =0 plane, consistent with the prediction
of Waleffe (1993) that resonant interactions of fast modes drive the flow to become
quasi-two-dimensional (figure 13).

Our work has a couple of limitations that it would be interesting to overcome in
future investigations.

First, our main concern has been to study rotating fluid turbulence for both high
Reynolds number Re and low Rossby number Ro. The approach of this initial study
has been to simulate a single large Reynolds number for a sequence of decreasing
Rossby numbers. It would be more informative to vary both parameters and to map
out the behaviour for a sequence of increasing Reynolds numbers as well. Of course,
this will require increasing grid resolution for the DNS and it is computationally
challenging, given the multiple time scales involved in rapidly rotating flow. In
principle, our conclusions could change, at least quantitatively, at higher Reynolds
numbers. Note that increasing the grid resolution also increases the wavenumber
mode density and, thus, the number of resonances and near-resonances. Likewise,
altering the aspect ratio of the flow domain may either increase or decrease the
number of resonant triads available. It is possible that changing the number of such
resonances could modify their effect. On the other hand, exact resonances even in
the limit of continuous wavenumbers are a codimension-1 subspace of the set of all
triads and always represent a relatively small fraction of the triadic interactions. It is
precisely this reduction in the number of effective interactions that provides hope for
a simpler description of rapidly rotating turbulence.

A second limitation of our study is that we have not always separated cleanly
resonant and non-resonant effects. Thus, in our analysis of ‘slow-fast-fast’ transfer
(figure 12), we could say with certainty that this is due to non-resonant interactions,
because resonant ‘slow-fast-fast’ triads have zero coupling coefficient (Appendix A).
However, in our study of ’fast-fast-fast’ transfer in the same subsection (figure 13),
we did not disentangle the distinct contributions of resonant and non-resonant
interactions. To do so would require simulating the full ‘averaged equation’ (2.8)
summing over all resonant triads. We have learned that equation (2.8) has in fact
recently been simulated, but at a somewhat lower resolution of 643 than our DNS,
by Y. Lee & L. M. Smith (2004, personal communication). Carrying out such a study
at higher resolutions is an important goal for future research. This is difficult because
it involves a complete enumeration of all such triple resonances and also because
the nonlinearity in equation (2.8) is not of convolution type and can no longer be
calculated efficiently in physical space via FFT. We simulated instead a subset of
the averaged equation (2.8), namely, the autonomous set, (2.10) and (2.11), satisfied
by the ‘slow’ two-dimensional modes. These equations describe the effects of the
‘slow-slow-slow’ triads, which are all resonant.
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Our work has investigated rapidly rotating turbulent fluids as a case study in the
application of resonant wave theory. The results of the study therefore have more
general interest than for this particular problem. The same type of theory has been
widely applied to geophysical turbulent flows with rotation and/or stratification
(Phillips 1981; Craik 1985). Details of the predictions may differ considerably
according to the context. For example, Bartello (1995) used a similar reasoning
as that of Waleffe (1993) to argue that for rotating, stratified turbulence the catalytic,
‘fast-slow-fast’ resonant triads will transfer the energy in fast gravity waves downscale
and provide a primary mechanism of nonlinear geostrophic adjustment, while the ‘fast-
fast-fast’ resonant interactions will be of secondary importance. In rapidly rotating
fluids without density stratification, we find that the opposite is true. Nevertheless,
many of the basic issues are the same in all applications of the resonant wave theory
to high-Reynolds-number turbulent flows. Therefore, it may be useful to summarize
several key conclusions from our investigation of this one example.

First, the main predictions of the wave-resonance theory appear to hold for Ro � 1
and Re � 1 simultaneously (as outlined in the opening paragraph of this section).
Convergence of the approximation holds in the useful sense that the energy in the
error fields decreases to zero, over a finite time interval. Present rigorous theorems
(Embid & Majda 1996, 1998; Majda & Embid 1998) use Sobolev-norm estimates
that yield useful estimates for rotating laminar flows, but not for fully developed
turbulence. An optimistic conclusion of our work is that those theorems can probably
be improved, by substitution of an L2 or energy norm for the Sobolev norms. A
proof of this may not be easy, given the current lack of understanding of the inviscid,
high-Reynolds-number limit of fluid equations. However, our numerical results lend
support to the idea that the energy-containing, large-scale motions in turbulent flow
will conform to the predictions of resonant wave theory in the appropriate limit.

We find that there is an intrinsic time restriction on the validity of the resonant
wave theory. The formal multiple-scale analysis, as well as the rigorous theorems,
predict that there should be a finite interval of the slow-time variable t over which
the approximation will converge. They do not answer the question whether this time
interval is finite in fact, or whether the approximation will be valid at any arbitrary
time for a sufficiently small Rossby number. Our numerical results seem to indicate
either that the convergence holds over only a finite time interval or else that the
Rossby numbers required for a close approximation become extremely small beyond
a certain time horizon. Of course, both the dynamics involved – rotating 3D-NS (2.2)
and the low-Rossby-number limiting dynamics given by the averaged equation (2.8) –
are chaotic at high Reynolds number and a rapid exponential divergence of their
solutions is to be expected for finite Ro. This does not imply a necessary failure of
the resonant wave theory applied to forced, statistically stationary turbulence, since
chaotic dynamics often possess ‘structural stability’ of their long-time statistics.

A more serious limitation of the wave resonance theory may be the magnitude
of the Rossby numbers required for convergence, even at relatively early times. We
have found sizable non-resonant effects for Rossby numbers as small as Ro = 0.066.

Since the Rossby number is not extremely small in most engineering applications, flow
two-dimensionalization is there probably due mainly to the non-resonant interactions,
for which the two-dimensional dynamics is not segregated from the three-dimensional
dynamics. However, the resonant wave theory provides the correct ‘rapid-distortion
limit’ for fast rotations. Therefore, it may still be useful to take into account the
resonance conditions in statistical modelling schemes for engineering purposes, as
a constraint which becomes exact as Ro → 0. Resonant interactions may be more
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important for geophysical flows, where typical Rossby numbers are much smaller.
However, for the atmosphere at midlatitude synoptic scales, the typical Rossby number
is only about Ro = 0.1 and even for the Gulf Stream with smaller characteristic
velocities the Rossby number is only Ro = 0.07 (Pedlosky 1987). In our simulations,
this is a marginal value to observe the predictions of the theory. A combination of
rotation with other effects such as stratification may be necessary in the atmosphere
and oceans to select resonant interactions of fast waves.

Direct numerical simulations are performed in LSSC-II at the State Key Laboratory
on Scientific and Engineering Computing in China and at the cluster computer
supported by NSF Grant No. CTS-0079674 at the Johns Hopkins University.

Appendix A. Decoupling of the slow two-dimensional modes
An important result mentioned in the text is that there is zero coupling constant

for resonant ‘slow-fast-fast’ triads in an incompressible fluid subjected to rapid rigid
rotation. This implies that the ‘slow’ two-dimensional modes evolve independently of
the ‘fast’ modes through the leading-order resonant interactions, in the limit of small
Rossby numbers. This result was derived first by Greenspan (1969) for eigenmodes in
a bounded container and later by Waleffe (1992) using detailed conservation of both
energy and helicity on a basis of helical plane waves. For the convenience of readers,
we reproduce here Waleffe’s simple and elegant demonstration.

The coupling constant that appears in the Navier–Stokes equation expressed by
helical modes, (2.7), was shown by Waleffe (1992) to have the form

C
sk,sp,sq

k pq = 1
2
(spp − sqq)h∗

sp
× h∗

sq
· h∗

sk
, (A 1)

with notational following that in our § 2. This coupling constant satisfies the joint
constraints of detailed energy conservation

C
sk,sp,sq

k pq + C
sp,sq ,sk

pqk + C
sq,sk,sp

qk p = 0 (A 2)

and of detailed helicity conservation

skkC
sk,sp,sq

k pq + sppC
sp,sq ,sk

pqk + sqqC
sq ,sk,sp

qk p = 0 (A 3)

for all triads of helical modes. These two constraints may be expressed equivalently
by the following equality of ratios:

C
sk,sp,sq

k pq

sqq − spp
=

C
sp,sq ,sk

pqk

skk − sqq
=

C
sq,sk,sp

qk p

spp − skk
. (A 4)

The key point in Waleffe’s argument is to compare the latter relation with a similar
one derived from the resonance condition, (2.9) in the text, or ωsp

+ ωsq
+ ωsk

= 0. After
substituting the dispersion relation for helical waves ωsk

= 2scosθk, this becomes

skcos θk + spcos θp + sqcos θq = 0. (A 5)

Projecting the wavenumber triad condition k + q + p = 0 onto the rotation axis gives
another equation

kcos θk + pcos θp + qcos θq = 0. (A 6)
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In the same way as for the coupling constants, (A 5) and (A 6) together are equivalent
to an equality of ratios:

cos θk

spq − sqp
=

cos θp

sqk − skq
=

cos θq

skp − spk
, (A 7)

valid for any resonant triad. Comparing (A 4) and (A 7) immediately yields the main
result. Indeed, sq is a slow mode if and only if cosθq =0. Suppose, then, that sq is a
slow mode and sk, sp are fast modes. Equations (A 4) and (A 7) imply that C

sq,sk,sp

qk p
stands in the same ratio to C

sk,sp,sq

k pq , say, as cosθq does to cosθk. Hence, it follows that
C

sq,sk,sp

qk p = 0 whenever cosθq = 0 and cosθk 	= 0.
The same result can be derived directly, but perhaps less intuitively, from the

formula (A 1). If (sq, sk, sp) are a ‘fast-slow-fast’ resonant triad, then cosθq = 0 and,
from the resonance condition (A 7), sk = sp, p = k, cosθk = −cosθp . Thus, the rate of
energy transfer into q disappears because

C
sq,sk,sp

qk p = 1
2
(skk − spp)h∗

sk
× h∗

sp
· h∗

sq
= 0. (A 8)

On the other hand, the rates of the energy transfer into k and p have the opposite
sign since, from (A 2),

C
sk,sp,sq

k pq = −C
sp,sq ,sk

pqk , (A 9)

implying that energy only exchanges between the three-dimensional modes through
the two-dimensional mode, which acts as a catalyst.

Appendix B. Dynamic Taylor–Proudman Theorem
Here, we use the helical decomposition to give a simpler and self-contained deriva-

tion of the Dynamic Taylor–Proudman Theorem for the ‘slow-slow-slow’ resonant
triadic interactions. In a triad consisting of all slow modes k, p and q, then kz = 0,
pz = 0 and qz = 0. In the kz = 0 plane or two-dimensional plane, the wavenumber vector

k = kx x̂ + ky ŷ and its amplitude k =
√

k2
x + k2

y . By choosing the helical modes hs(k) =

N × k̂ + isν which satisfy ik × h± = ±|k|h± (Waleffe 1992), we have

hs(k) = ẑ + is
ky x̂ − kx ŷ

k
= ẑ + is k̂

⊥
. (B 1)

Here N = k × ẑ/|k × ẑ| and k̂
⊥

=(ky x̂ − kx ŷ)/k are unit vectors orthogonal to the unit

vector k̂ = k/k. The other two helical modes in the triad are hs( p) = ẑ + is p̂⊥ and
hs(q) = ẑ + is q̂⊥, where the unit vectors p̂⊥ =(py x̂ − px ŷ/p and q̂⊥ =(qy x̂ − qx ŷ)/q
are perpendicular to the unit wave vectors p̂ = p/p and q̂ = q/q , respectively. The
velocity projection onto hs is

as(kx, ky, 0, t) =
hs(kx, ky, 0) · û(kx, ky, 0)

2

= 1
2

[
ûz(kx, ky, 0) + is

(
ûxky

k
− ûykx

k

)]
. (B 2)

Since

ω̂ = ik × û = i(kx x̂ + ky ŷ) × (ûx x̂ + ûy ŷ + ûz ẑ) = i(kxûy − kyûx) ẑ = ω̂z ẑ, (B 3)
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(B 2) can be also written as

as(kx, ky, 0, t) = 1
2
ûz(kx, ky, 0) +

s

2

ω̂z(kx, ky, 0)

k
. (B 4)

Thus, the vertically averaged vertical velocity and the vorticity can be separated from
the above equation as

ûz = a+ + a−, ω̂z = k(a+ − a−). (B 5)

For the slow modes ask
(t) = Ask

(t), the ‘averaged equation’ (2.8) becomes(
∂t +

1

Re
k2

)
ask

=
1

4

∑
k+ p+q=0

∑
sp,sq

(spp − sqq)
(
h∗

sp
× h∗

sq

)
· h∗

sk
a∗

sp
a∗

sq
. (B 6)

Since p̂⊥ × q̂⊥ = p̂ × q̂,(
h∗

sp
× h∗

sq

)
· h∗

sk
= ( ẑ − is p̂⊥) × ( ẑ − is q̂⊥) · ( ẑ − is k̂

⊥
)

= (sp p̂ − sk k̂) × (sk k̂ − sq q̂) · ẑ. (B 7)

Then, (B 6) becomes(
∂t +

1

Re
k2

)
ask

=
1

4

∑
k+ p+q=0

∑
sp,sq

(spp − sqq)(sp p̂ − sk k̂) × (sk k̂ − sq q̂) · ẑ. (B 8)

To construct ûz and ω̂z (equation (B 5)) from the above equation, we have(
∂t +

1

Re
k2

)
(a+k

− a−k
)

=
1

2

∑
k+ p+q=0

p2 − q2

k
( p̂ × q̂ · ẑ)[−a∗

+p
a∗

+q
− a∗

−p
a∗

−q
+ a∗

+p
a∗

−q
+ a∗

−p
a∗

+q
], (B 9)

and(
∂t +

1

Re
k2

)
(a+k

+ a−k
)

=
1

2

∑
k+ p+q=0

( p̂× q̂ · ẑ)[(p−q)(−a∗
+p

a∗
+q

+a∗
−p

a∗
−q

) + (p + q)(a∗
+p

a∗
−q

− a∗
−p

a∗
+q

)]. (B 10)

Let bk = a+k
− a−k

and θk = a+k
+ a−k

, then a+k
=(θk + bk)/2 and a−k

=(θk − bk)/2.
Substituting the above relations into (B 9) and (B 10), we have(

∂t +
1

Re
k2

)
bk = −1

2

∑
k+ p+q=0

p2 − q2

k
p̂ × q̂ · ẑ b∗

pb∗
q, (B 11)

and (
∂t +

1

Re
k2

)
θk =

1

2

∑
k+ p+q=0

p̂ × q̂ · ẑ
pq

[qb∗
pθ∗

q − pb∗
qθ

∗
p]. (B 12)

Since ω̂z = kbk from (B 5), (B 11) can be written in terms of the vorticity as

(
∂t +

1

Re
k2

)
ω̂z =

1

2

∑
k+ p+q=0

p̂ × q̂ · ẑ
pq

[
qb∗

pω̂∗
zq

− pb∗
qω̂

∗
zp

]
. (B 13)
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This is exactly the same as the helical formulation of two-dimensional N-S equation
which is given by Waleffe (1993).

Also because of ûz(k) = θk from (B 5), (B 12) can be written in terms of ûz(k) as(
∂t +

1

Re
k2

)
ûzk

=
1

2

∑
k+ p+q=0

( p̂ × q̂ · ẑ)
pq

(
qb∗

pû∗
zq

− pb∗
q û

∗
zp

)
. (B 14)

This equation has the same structure as the two-dimensional vorticity equation (B 13).
It is known that a two-dimensional passive scalar and the two-dimensional vorticity
obey homologous equations and, in fact, the above equation is the helical formulation
of the two-dimensional passive scalar equation.

Based on the above discussion, we now summarize the Dynamic Taylor–Proudman
theorem as the following: in three-dimensional rotating turbulence, when Ro →
0, ‘slow-slow-slow’ triadic interactions yield the 2D-3C Navier–Stokes equations.
Here, 2D-3C refers to two variables (x,y) and three components (u3D, v3D, w3D). The
vertically averaged horizontal velocity

(u3D, v3D) =
1

H

∫ H

0

(ux(x, y, z), uy(x, y, z) dz

satisfies the two-dimensional Navier–Stokes equation

∂t ω̂z + νk2ω̂z = −ikx
̂u3D(x, y)ωz(x, y) − iky

̂v3D(x, y)ωz(x, y), (B 15)

and the vertically averaged vertical velocity

w3D =
1

H

∫ H

0

uz(x, y, z) dz

obeys the two-dimensional passive scalar equation

∂t ŵ
3D(k) + νk2ŵ3D(k) = −ikx

̂u3D(x, y)w3D(x, y) − iky
̂v3D(x, y)w3D(x, y). (B 16)

Here, H is the vertical height of the domain and the three averaged velocity
components in the Fourier space are as follows:

û3D(k) = i
ky

k2
x + k2

y

ω̂z(k), v̂3D(k) = −i
kx

k2
x + k2

y

ω̂z(k), ŵ3D(k) = ûz(k). (B 17)
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